How are fossils made? A look at fossilization portrayed on stamps.

Peter Voice

Western Michigan University and the Michigan Geological Survey

A **fossil** is the remains or traces of a once living organism preserved in the geologic record. My historical geology professor added to the definit ion that the organism had to have lived 10,000 or more years ago (I actually teach this as well – it is a bit arbitrary, but provides a working cut-off between paleontological and archaeological research). The remains can include mineralized hard parts of the skeleton (shells, teeth, bones) or soft flesh (tissues, hair, feathers). Traces are an intriguing (and at times very frustrating) part of the definition – as these are geologic structures formed by organisms that exhibit that a.) the animal was present in the environment and b.) it was actively doing some behavior. Trace fossils include footprints, nests, coprolites (fossilized feces) and many other structures. They can be frustrating because we cannot be certain that we know what kind of organism produced the structure (and some simple burrows for example are known to be made by multiple species in modern environments). The study of trace fossils is called **ichnology** (Figure 1).

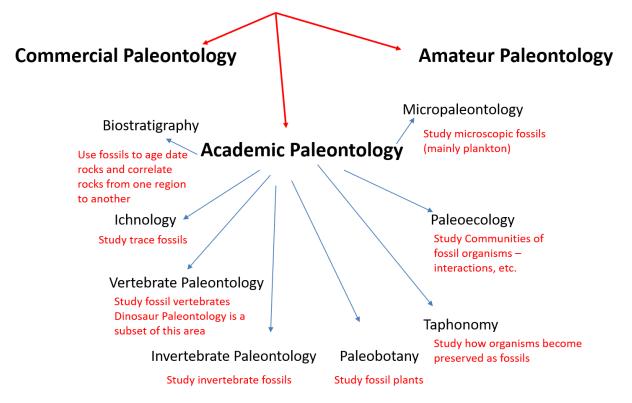
How does an organism become a fossil? Paleontologists have spent the better part of two centuries working to figure this out. There is even a sub-branch of paleontology (Figure 1) called **taphonomy** that focuses in part on fossilization. Taphonomic research includes understanding how an animal dies (illness, predation), how the body becomes buried, how the fossil becomes preserved and later is brought to the surface where paleontologists can find it. Some illnesses as well as parasitism can leave traces of symptoms preserved in the bones of the affected animals. Examples include parasitic sores from *trichomonas* in *Tyrannosaurus Rex* jaws and silicosis in the joints of North American Rhinocerids. Some taphonomists study the traces of predation – abrasion on bone or shell from teeth of predators. Some naticid snails for example use their tongue-like radula to bore into the shells of other snails or clams, leaving a distinctive circular boring in the shell. Some fossils even exhibit partial healing with new shell or bone growth partially filling in the predation scar.

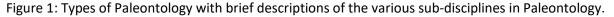
Taphonomists define several mechanisms that might preserve an organism as a fossil. These mechanisms include unaltered remains, recrystallization, replacement, and carbonization and compression. In addition, one mechanism preserves the shape of the organism but not the actual remains – casts and molds. Each mechanism will briefly be described below with examples of stamps that illustrate the mechanism (Figure 2). In all cases, burial is key to fossilization – as quickly burying an organism will prevent scavenging (and the breakdown of the body into scattered pieces by messy eaters), but also removes the organism from the effects of oxygen and microbially- and fungally-mediated decomposition.

Unaltered remains are rare and are limited to relatively recent rocks. Soft-bodied preservation as unaltered remains are known from highly specialized environments. Probably the best examples come from Pleistocene mammals preserved frozen in the permafrost in northern North America and Siberia. In these cases, cold, dry air mummifies the body followed by burial and can preserve fine details like the stomach contents. A variety of frozen animals including bison, horses, mammoths, caribou and wolves have been found. Other cases of soft-bodied preservation include desiccation and mummification in arid settings or preservation in tar pits such as the La Brea Tar Pits of California. Fossils in amber preserve the shape of the animal, though over time decay will alter the chemistry of the preserved remains. The

oldest unaltered skeletal materials include Mother of Pearl shells in ammonoids (a coil-shelled animal related to squids and the *nautilus*) that date back to the Early Jurassic.

Recrystallization is a common process that preserves many mineralized skeletal elements – especially shells. Most marine animals today secrete shells made of up calcium carbonate in the form of aragonite. Aragonite is one of two common polymorphs of calcium carbonate – the other being the mineral calcite. Calcite and aragonite are chemically the same, but the way the calcium and carbonate ions are arranged is different in each mineral. Aragonite is less stable at Earth surface conditions. A clam shell is made up of tiny crystals of aragonite embedded in a framework of collagen and chitin. After burial, as groundwater flows through the porous structure, chemical reactions can slowly reorganize the aragonite into calcite, while also growing the crystals larger to fill in the void left as the collagen and chitin decay. After fossilization, a recrystallized fossil exhibits a chemistry that is very similar to the original skeletal composition.


Replacement generates some of the prettiest fossils that paleontologists have described. As the name suggests, the original hard (or soft parts in the case of wood) parts are replaced by new minerals. There are two flavors of replacement: **petrifaction** and **permineralization**. During petrifaction, the organism is quickly dissolved and replaced generating a fossil that shows the coarse features of the original plant or animal. Permineralization is a slower process – operating at the atomic scale by slowly replacing one atom at a time. Because Permineralization is a slow process, permineralized fossils generally exhibit exceptional detail that can include the structure of individual cells in the body! Replacement usually generates a fossil with a completely new chemistry – common replacement minerals include pyrite (FeS₂), silica (SiO₂) and Opal (hydrated SiO₂), and apatite (more common in porous bone where this Calcium Phosphate mineral fills the pores left behind after decay of collagen).


Carbonization and compression is another mechanism that preserves soft-bodied organisms or the softbodied tissues of organisms with mineralized skeletons. After burial, as more and more sediments are laid down on top of the animal, heat and pressure volatilize organic compounds and slowly convert the body to pure carbon (graphite). The fossil tends to be compressed into a 2-d sheet. Organisms like plants and jellyfish are commonly preserved as carbon films. In some cases, carbonization will preserve carbon films around the skeleton of an animal – showing the shape of the animal with flesh on the bone. Carbon films often form in fine-grained rocks like some limestones and shales – and some taphonomists think that clay minerals may be partly responsible for the preservation of carbon films.

The last mechanism does not preserve the actual animal but instead both an impression of the organism (a **mold**) and a replica of the organism (a **cast**). After death, the animal falls into mud – if you were to come across the body later on, you could pull the animal from the ground and see the impression left behind. Footprints are a similar idea – as you step in mud, the mud conforms to your feet. Then as you take your next step, pulling your foot out of the mud and leaving behind an impression of the sole of your foot. If the animal is completely buried, and groundwater has dissolved the shell and flesh, a void space can be left in the rock. This void space has the shape of the animal that decayed away. Later on sediment can filter down into the void or cement can be precipitated by groundwater to fill the void. In both cases, the material forms a 3-dimensional replica of the animal. Molds and casts are complicated by the observation that some animals can form multiple molds (think of snails – where sediment can conform to the outer surface of the shells as well as fill in the hollow after the snail's body decayed away. This has led to more nomenclature – with internal molds and external molds. In a clam, the

external mold shows the surface ornamentation – ribs, spines etc., while the internal mold exhibits the muscle scars and pallial line (where the flesh of the mantle attaches to the shell).

Unfortunately, fossilization is a rare process. Paleontologists recognize that most organisms have very little chance of making it into the fossil record. Fossilization is more likely for organisms with mineralized skeletons that lived in marine environments where burial was rapid. In terrestrial environments, weathering and erosion may break down the organism before it gets buried (and scavengers and decomposers can also attack the remains). Paleontologists also recognize the fossilization is more likely if the species was very abundant (so future paleontologists exploring our era might find a lot of cow and human remains – due to both abundance and for humans – burial customs).

Theropod dinosaur footprints, Lesotho, 1984, SC 445-447

Carbon films of ferns British Antarctic Territory 2008, SC 401-404

Helminthoides burrows France, 2018 SC 5365

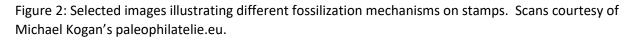
External Casts of Ammonoid and Trilobite head, Local Issues, Spain, 2019

Recrystallized Starfish Slovenia, 2001, SC 454

Recrystallized Gryphea (Oyster) Luxembourg, 1984 SC 715

Internal Mold, Bivalve Slovenia, 2014, Local Issue

Apatite Replacement and Recrystallization, Gigantosaurus Serbia, 2009 SC 489


Carbon films of insects Brazil, 2016, SC 3349a and b

Opalized fossils - Replacement with Opal Australia, 2020, SC - Not Available Yet

Fossil Insect in Amber Lebanon, 2003, SC 570

Acknowledgements

Michael Kogan kindly reviewed several drafts of this article, providing very useful feedback to improve it.

References

Parasitism in Tyrannosaurus Rex (<u>https://www.nationalgeographic.com/science/phenomena/2009/10/06/the-plague-of-tyrants-a-</u> common-bird-parasite-that-infected-tyrannosaurus/)

Silicosis in Rhinocerids the aftermath of one of the Yellowstone hotspot Eruptions (<u>https://www.youtube.com/watch?v=2ofNufZVcMU</u>)

Permafrost Fossils

http://www.bbc.com/earth/story/20141105-animal-mummies-from-the-ice-age

https://allthatsinteresting.com/ice-age-wolf-pup-caribou-canada

Fossilization

https://www.livescience.com/37781-how-do-fossils-form-rocks.html

http://scienceviews.com/dinosaurs/fossilformation.html

and any basic Historical Geology textbook (I use Stanley and Luczaj's Earth System History).